

Mission 14:
Line Art

Student Workbook

[image:]
[image:]

Digital Artistry[image:]

In this mission you will discover the magic of computer graphics. You will use loops to create beautiful and interesting art.

Go to the Mission 14 Log and fill out the Pre-Mission preparation.
· In previous missions, you learned how to draw with lines, circles and rectangles. How do you think you can use loops to create art?

Mission 14: Line Art
[image:]
Digital Artistry

This mission will lead you on a journey
to discover the magic of computer graphics.
You will make beautiful visual art with just a few lines of code.

Pixel Power

It all starts with a pixel drawn on the screen. But as you’ve seen, things get much more interesting when you loop your code to create patterns of logic, sounds and light!

for the Win!

As you complete this mission you will gain a
mastery of the for loop, a versatile tool to
have in your coding toolbox.
· Ready to visualize a range of colorful pixels streaming across your LCD screen?

Mission 14: Get started

· Go to https://make.firialabs.com/ and log in.
[image:]
· Go to Mission 14
[image:]
· Click and start Mission 14.
Objective #1: Pixel Power[image:]
You have already drawn on the screen using bitmap functions.
· display.draw_rect()
· display.draw_text()
· display.draw_circle()
· display.draw_line()
DO THIS:[image:][image:]
Click on
Go to your Mission Log and write down two facts about Bitmaps.[image:]

Objective #1: Pixel Power[image:]
Another basic graphic is the single pixel,
which other shapes are made from:[image:]

The CodeX LCD screen contains 240x240
pixels.
· 240 pixels from left to right: x = 0 to 239
· 240 pixels from top to bottom: y = 0 to 239
Setting Pixels
You can set (or draw) a pixel anywhere on the screen.
This code draws a YELLOW pixel at x=120 and y=120:[image:]

Objective #1: Pixel Power
DO THIS:[image:]
· Create a new file named PixelPlay
· Type in the code below.
· Then draw 6 more pixels at different locations on the screen with different colors.
· Guess where they should appear before running the code.
· Are they where you expected them to be?
· Run the code.
[image:]

Objective #1: Pixel Power
Reading Pixels
· Your code can write pixel colors to the display, but it can also read them back!
· [image:]The following code sets a pixel on the screen, and then reads the tuple of the color.

[image:]
DO THIS:[image:]
· Open the Console
· Type in the 4 lines of code directly into the Console (not your program)
· You know from working with RGB colors that CYAN is (0, 255, 255). Is this the tuple that was printed?
· Go to your Mission Log and write down the tuple value of c.
· Then you can close the Console.
[image:]
[image:]
Mission Quiz: Pixel Basics
Test your skills by taking the quiz.

Objective #2: Line Up!
DO THIS:[image:]
· Click on to add it to your toolbox.
· Go to your Mission Log and write the definition of “pixel”.
[image:]

Objective #2: Line Up!
Now that you have mastered pixels …
· Seriously, you pretty much know all there is to know about them!
Line Up! What do you call a bunch of pixels in a row?
	Wait for it ….. A LINE!
So what are you waiting for?
· The LCD is 240 pixels wide.
· Just copy and paste display.set_pixel() 240 times, right?
Don’t you dare! That is what loops are made for!
[image:]
DO THIS:
Delete ALL the set_pixel() commands. Replace them with a loop.
· A single lovely for loop is all you need to achieve the goal!
· Run the code.
[image:]

Objective #3: Two Axes to Grind
Add a Vertical Axes
· You have a nice horizontal line. Adding a vertical line to match will create a perfect reference for drawing additional line art.
Getting Centered
· Your code currently uses “magic numbers” like 240 for the display width, and 120 for the center.
What is a “magic number”?
· A number that just appears in code with no explanation.
· Other programmers may have no idea what they mean.
· And if something changes, like a size, the number won’t work and must be changed.
You can eliminate a magic number by using a variable or constant instead.
Avoiding a “magic number”
[image:]Python has a function that can tell you the display width and height.
· Use the function as the range in the for loop.
· Use the functions to define x_center and y_center.
· Then use the variables in the display.set_pixel() functions
Objective #3: Two Axes to Grind
DO THIS:[image:]
· Go to your Mission Log and write the answers to the questions.
[image:]
[image:]
DO THIS:
· Assign variables for the center of the screen.
· Use display.width and display.height
· Just divide the width and height in half![image:]

Objective #3: Two Axes to Grind
DO THIS:[image:]
· Modify the for loop to use display.width and y_center
· Add a new for loop just like the first one, but for a vertical line.
· Use y and display.height for the range.
· Use x_center in the display function.
· Run the code. You WILL get an ERROR!
[image:]

[image:]

Objective #4: Bug Fix
Variables used for a location, like x and y must be integers, or data type int
· You don’t always know something until you try it!
· Then, you can just fix the bug.
· Be fearless – try stuff!
You can eliminate the error by converting the division problem to an integer, or data type int.
[image:]
When you use division (/), the answer is automatically a float, or decimal number.
· display.width / 2 = 120.0
· This is a float!
· We need 120, not 120.0
· Use the conversion function int() to convert it to an integer!

Objective #4: Bug Fix
DO THIS:[image:]
· Fix the bug by converting the x_center and y_center variables to integers
· Run the Code.[image:]

[image:]DO THIS:
· Go to your Mission Log and write the answers to the questions.
[image:]

Objective #5: Graphical Grid[image:]
The X and Y axes (horizontal and vertical lines) will help with symmetry and balance as you create artistic designs.
· But it is still difficult to judge
scale at a glance.
· Creating a grid of dots can help
to clearly see pixel spacing over the whole screen.

Dot dot dot …
You want to create a grid of dots. Each “dot” is just a single pixel.
You can draw a line of white dots, only showing every 10th pixel, by using a step in the for loop.
	[image:]
Go ahead – try it! Change the step and run the code again, to see what happens.

Objective #5: Graphical Grid
DO THIS:[image:]
· Go to your Mission Log and write the answer to the question.
[image:]

Objective #5: Graphical Grid
[image:]
Notice how the step parameter of range(start, stop, step) advances x by 10 every loop.
Enter the Matrix: You will need more than a single line of dots to complete the objective.
· A grid that covers the whole screen!
· This is a bunch of lines, drawn top to bottom.
Objective #5: Graphical Grid[image:]
DO THIS:
· No magic numbers!
· Define a CONSTANT for the step parameter (grid spacing)
· Use two loops – an inner and outer loop – to draw the grid
· The inner loop draws a single horizontal line
· The outer loop repeats the horizontal line down the height of the screen
· Note: If you have code in your program from page 14 (experimenting with step) you can delete it first.
· [image:]Run the code.

[image:]
[image:]
Mission Quiz: Graphics Ranger
Test your skills by taking the quiz.

Objective #6: Keep It Simple
You have transformed your screen into a fantastic canvas for graphical artistry!
· But before you move on, you should neaten it up a bit.
Line Drawing Function
· Drawing a line pixel by pixel is awesome, but CodeX has a built-in function that draws a line faster and simpler
· And it can do diagonal lines, too!

Simplify your code by replacing the for loops with display.draw_line().
The built-in function looks like this:
[image:]
It requires the starting location (x1, y1) and the ending location (x2, y2) and the color.
Objective #6: Keep It Simple
Think about the horizontal and vertical lines in your code
right now, drawn with for loops and pixels.
· What would the starting and ending locations be for each line?
· Horizontal line: x goes from 0 to display.width,
y is at y_center
· Vertical line: y goes from 0 to display.height,
x is at x_center
· What would the commands look like to draw the two lines?

Frame it Up!
You can also draw a blue box around the edges to create a border for your art. You used display.draw_rect() several times in Mission 13.
· What would the starting location be for the box?
· Do you think x and y start at (0, 0)
· What are the width and height of the box?
· Would you use display.width and display.height?

Objective #6: Keep It Simple[image:]
DO THIS:
· Go to your Mission Log and write the answers to the questions.
[image:]
[image:]
DO THIS:
· Save to a New File!
· Use the File → Save As menu to create a new file called LineArt
· In your new LineArt file, delete the code that drew the red horizontal and vertical lines.
[image:]
Objective #6: Keep It Simple[image:]
DO THIS:
· Draw the horizontal and vertical lines using display.draw_line()
· Draw a border box using display.draw_rect()
· Run the code.

[image:]

Objective #7: Get Artistic!
You are working with straight lines. How artistic can you get?
· Well, you might be surprised!
· Straight lines can get downright curvy!
Look at the graphic in CodeSpace Objective 7.
· Notice as Y moves down, X moves to the right!
· Remember – on CodeX, y values increase when going down!

Whoa! String Art :-)
Watch the animation in CodeSpace Objective 7. The lines make a curve. That is called an envelope.
Click this link to learn more about envelopes in geometry. You don’t need to understand the math! Scroll through the page and look at some of the string art examples.

·
·
·
·

Objective #7: Get Artistic!
DO THIS:[image:]
· Draw several lines to create some line art (after the border.
· Notice the start x is always 0, and the ending y is always 239.
· Increasing the start y and ending x is how you slide the line down the screen.
· The spacing inside the parameters is for clarity and doesn’t impact the run.
· With all this repetition, you are probably thinking … shouldn’t we use a loop?
· The answer is YES. We will do that next. For this objective, type in all the lines.
· Run the code.
[image:]

Objective #8: Automate Your Art
Hey, that is a pretty cool display!
· But it would be nice to automate some of those “magic numbers” and reduce the lines of code
The web follows this pattern:
· First line starts at (0, 0) and ends at (0, 239)
· The next line moves y down (+40) –and–
moves x across (+40)
· Then repeat the y+40 and x+40 many times
It may help to track the lines with your fingers.
· [image:]Use your left finger for the start of the line.
· Use your right finger for the end of the line.
· Start with the first line (it is vertical against the border)
· Follow each line by moving down (left) and over (right)

Objective #8: Automate Your Art
Now try doing the webbing with a for loop.
Did you notice that the middle two numbers (start y and
end x) were always the same? You can use a variable for that.
The numbers increase by 40, so use that as your step parameter. Your loop could look like this:
[image:]
Can you identify the start y, end x and step?

[image:]
DO THIS:
· [image:]Delete ALL the lines of code that draw the white webbing.

Objective #8: Automate Your Art[image:]
DO THIS:
· To avoid a magic number, define a constant for WEB_SPACING and use display.height or display.width when needed.
· Replace the code with a for loop.
· Run the code.
[image:]
[image:]
DO THIS:
· Change the value of WEB_SPACING to something less than 40.
Run the code again and see what happens.

[image:]
Objective #9: A Splash of Color!
Take some time to experiment with the code you have now.
· Art is all about experimentation and creativity!
Try changing the color:
[image:]
Add to your code by going from lower left to upper right:
[image:]

Is your brain hurting yet?
· It can be a little mind-bending trying to work out how to sweep lines across the screen just the way you want to.
We can simplify the approach!
· Create a function that draws webbing.
· It will use variables for “delta”, which means “change”

Objective #9: A Splash of Color![image:]
DO THIS:
· Create a function that will draw a web.
· It is very similar to display.draw_line() but uses one more parameter, count.
· Count is the number of lines it will draw.
· The function can go under the grid and border.
· Calculate the changes in the x and y locations.
· This is a lot of math! Don’t worry about it if it doesn’t make sense.
· Just know that a delta is a small change, and this math does all the work.[image:]

Objective #9: A Splash of Color![image:]
DO THIS:
· Now use your values to draw a line, and make the changes for the next line.

[image:]

Objective #9: A Splash of Color![image:]
DO THIS:
· First delete the for loop that draws the MAGENTA web.
· Replace the code by calling the function.
· Run the program.
[image:]

· Now delete the code for the GREEN webbing.
· Replace the code by calling the function.
· Run the program
[image:]
· Draw two more webs.
· Run the program.
[image:]
Objective #9: A Splash of Color![image:]
DO THIS:
· Draw at least two more webs!

· You can use your own creativity, or:
· Try finishing the inner webs by filling in the ??

[image:]
· Try finishing the outer webs by filling in the ??
[image:][image:][image:]

Mission Complete

You have completed the thirteenth mission. [image:]
Do this:
· Read your “Completed Mission” message
· Complete your Mission 14 Log
· Post-Mission Reflection
· Get ready for your next mission!

Wait! Before you go … Clear the CodeX
Go to FILE -- BROWSE FILES
Select the “Clear” file and open it
Run the program to clear the CodeX
Okay. Now you can go.

Page 1[image:]
image4.png

image5.png

image6.png
NEXT

image7.png
(0,0 (239,0)

(120, 120)

(0,239 (239, 239)

xv)

image8.png
A bitmap

image9.png
Mission Activity: Objective #1

Click on and read about graphics bits. List two facts you learned:

Type the code in the Console. What tuple is printed for c:

image10.png
Draw a single RED pixel at x=10, y=10
display.set_pixel(10, 10, RED)

image11.png
from codex import *

display.set pixel(120, 120, YELLOW)

image12.png
from codex import *
display.set_pixel(200, 200, CYAN)
c = display.get_pixel(200, 200)
print(“color =", c)

image13.png

image14.png
>>> from codex import *

>>> display.set_pixel(200, 200, CYAN)
>>> ¢ = display. getJJlxel(ma 200)
>>> pr‘]nt("Color = c)

image15.png

image16.png
Mission Activity: Objective #2

Clickon and read about pixels. Write the definition of pixel: ______________

image17.png
codex

X (??):
display.set pixel(x, 120, RED)

Replace ?? with the
number needed to go all
the way across the

screen.
Hint: the range of x is the
width of the screen.

image18.png
display.width
display.height

image19.png
Mission Activity: Objective #3

Explain what a magicnumberis:

What can you do to avoid magicnumbers? _________ _—

image20.png
from codex import *

Variables for screen center
x_center = display.width / 2
y_center = display.height / 2

image21.png
Red horizont i center
for x in rangg(display.width):
display.set_pixel(x,| y_center,|RED)

image22.png
Red vertical line at the center

for| y in range(display.height):
display.set_pixel(x_center}, y, RED)

image23.png
TypeError: can't convert float to int

image24.png
Variables for screen center

x_center =(int(display.width / 2) W

y_center =|int(display.height / 2)

image25.png
Mission Activity: Objective #4
What type of answer is “displaywidth/27

How do you change it to an integer?

image26.png

image27.png
y =20
for x in range(®, display.width, :
display.set pixel(x, y, WHITE)

image28.png
Mission Activity: Objective #5

What does the “10” do in the code?

image29.png
y =20
for x in range(e, display.width, 10):
display.set_pixel(x, y, WHITE)

image30.png
from codex import *

Grid spacing (pixels)
GRID 10

variables for screen center

x_center = int(display.width / 2)
y_center = int(display.height / 2)

image31.png
Draw a grid of white pixels
for y in range(e, display.height, GRID):
for x in range(e, display.width, GRID):
display.set_pixel(x, y, WHITE)

image32.png
Draw a line from point (x1, y1) to (x2, y2)
display.draw_line(x1, y1, x2, y2, color)

image33.png
Mission Activity: Objective #6

What information is needed to draw a line using “display.draw_line()"?

image34.png
Red horizontal line at the center

splay.set_pixel(x_center, y,

image35.png
Draw a grid of white pixels
for y in range(@, display.height, GRID):
for x in range(@, display.width, GRID):
display.set_pixel(x, y, WHITE)

% Horizontal and vertical lines

display.draw_line(@, y_center, display.width, y center, RED)
display.draw_line(x_center, @, x_center, display.height, RED)
Blue border

display.draw_rect(@, 0, display.width, display.height, BLUE)

image36.png
Draw a white spider web (envelope) spaced 4@ pixels apart
display.draw_line(e, @, ©, 239, WHITE)
display.draw_line(e, 40, 40, 239, WHITE)
display.draw_line(e, 80, 80, 239, WHITE)
display.draw_line(e, 120,120,239, WHITE)
display.draw_line(e, 160,160,239, WHITE)
display.draw_line(e, 200,200,239, WHITE)
display.draw_line(e, 239,239,239, WHITE)

image37.png

image38.png
Draw a white web spaced 4@ pixels apart
for 1 in range(e, 240, 40):
display.draw_line(e, i, i, 239, WHITE)

image39.png
Draw a white spider web (envelope) spaced 40 pixels apart
ay.draw_line(e, @, o, 239,
40, 40, 239,
display.draw_| 80, 80,

200,200,239,
ay.draw_line(e, 239,239,239, WHITI

image40.png
Draw a white web spaced 46 pixels apart

WEB_SPACING = 40

for i in range(e, display.height, WEB_SPACING):
display.draw_line(e, i, i, display.height, WHITE)

image41.png
Draw a white web spaced 40 pixels apart

WEB_SPACING = 20

for i in range(e, display.height, WEB_SPACING):
display.draw_line(e, i, i, display.height, WHITE)

image42.png
Draw a magenta web spaced 4o pixels apart

WEB_SPACING = 10

for i in range(e, display.height, WEB_SPACING):
display.draw_line(e, i, i, display.height, MAGENTA)

image43.png
WEB_SPACING = 10
for i in range(e, display.height, WEB_SPACING):
display.draw_line(i, display.height, display.width, display.height-i, GREEN)

image44.png
Blue border
display.draw_rect(e, @, display.width, display.height, BLUE)

flef draw web(x1, y1, x2, y2, count, color): |
% Calculate the step size "deltas” for x and y
dx1 = int((x2 - x1) / count)
dy1 = int((y2 - y1) / count)
dx2 = dy1
2 = -dx1

image45.png
def draw_web(x1, y1, x2, y2, count, color):

calculate the step size "deltas" for x and y
dx1 = int((x2 - x1) / count)

dy1 = int((y2 - y1) / count)

dx2 = dy1

dy2 = -dx1

% Draw the line and move endpoints by dx, dy
for i in range(count):

display.draw_line(x1, y1, x2, y2, count, color)
x1 = x1 + dx1
yl =yl +dyl
X2 = x2 + dx2
y2 = y2 + dy2

image46.png
Draw a magenta web spaced 40 pixels apart
WEB_SPACING = 20
draw_web(@, @, 0, display.height, WEB_SPACING, MAGENTA)

image47.png
String art!
WEB_SPACING = 20

draw_web(e, 0, 0, display.height, WEB_SPACING, MAGENTA)

draw_web(e, display.height, display.width, display.height, WEB_SPACING, GREEN)
draw_web(x_center, @, x_center, y center, WEB_SPACING, ORANGE)
draw_web(display.width, y center, x center, y center, WEB_SPACING, PINK)

image48.png
String art!

WEB_SPACING = 20

draw_web(0, @, 0, display.height, WEB_SPACING, MAGENTA)

draw_web(@, display.height, display.width, display.height, WEB_SPACING, GREEN)
draw_web(x_center, @, x_center, y center, WEB_SPACING, ORANGE)
draw_web(display.width, y center, x_center, y center, WEB_SPACING, PINK)]

image49.png
draw_web(??, ??, x_center, y_center, WEB_SPACING, RED)
draw_web(x_center, display.height, 22, ??, WEB_SPACING, WHITE)

image50.png
draw_web(??, ??, display.width, ©, WEB_SPACING, CYAN)
draw_web(display.width, @, ??, ??, WEB_SPACING, GREEN)

image51.png
Think about
where you
want the
last line to
finish

image52.png
Think about
where you
want the
first line to
start

image1.png
(=) FIRIAtass

image2.png
Mission 14: Line Art
Make beautiful images with the power of the pixel!

image3.png

